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Abstract. The fusion of a 3D reconstruction up to a similarity transformation
from monocular videos and the metric positional measurements from GPS usu-
ally relies on the alignment of the two coordinate systems. When positional mea-
surements provided by a low-cost GPS are corrupted by high-level noises, this ap-
proach becomes problematic. In this paper, we introduce a novel framework that
uses similarity invariants to form a tetrahedral network of views for the fusion.
Such a tetrahedral network decouples the alignment from the fusion to combat
the high-level noises. Then, we update the similarity transformation each time a
well-conditioned motion of cameras is successfully identified. Moreover, we de-
velop a multi-scale sampling strategy to reduce the computational overload and
to adapt the algorithm to different levels of noises. It is important to note that our
optimization framework can be applied in both batch and incremental manners.
Experiments on simulations and real datasets demonstrate the robustness and the
efficiency of our method.

1 Introduction

Monocular SLAM (Simultaneously Localization And Mapping) is only able to recon-
struct camera poses and 3D structures, so called visual measurements, up to a simi-
larity transformation due to the gauge freedom [11]. Such a similarity reconstruction
is not sufficient for the applications on the navigation, osculation avoidance for robot-
s and unmanned aerial vehicles. Moreover, the noise in feature detections, unbalance
features [9], local bundle adjustments [4], and biased depth estimators [17] make the
visual measurements contain significant drift in both rotation and translation over a
long range movement. Drift-free global positional measurements provided by modern
global position system (GPS) can be used to address the aforementioned inherent draw-
back of monocular SLAM. Some works [14, 3] have been done on addressing the s-
cale ambiguity solely. However, the inherent drifting of monocular SLAM makes the
error between visual measurements and ground truth no longer follow the normal dis-
tribution, which in turn biases the estimation of scale even under maximum likelihood
framework. To compensate for the drifting, some other works [6, 15, 8] directly fuse po-
sitional measurements with visual measurements by the metric distances between them,
which relies on a good initial similarity transformation to resolve the scale ambiguity
and requires aligning both set of data in the same coordinate frame. The estimation of
such initial transformation of scales can be problematic when the camera moves under

1 Tian Fang is the corresponding author.
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a critical motion such as moving along a straight line, where the rotation around the
moving direction is not well constrained. Even worse, low cost GPS sensors on many
consumer products give very noisy positional measurement making the estimation of
initial similarity transformation less reliable.

In this paper, we propose a novel multi-scale tetrahedral fusion framework. Based
on the invariance of the ratios of two distances under a similarity transformation, we
define a ratio constraint over a tetrahedral network defined on the cameras that are as-
sociated with positional measurements. This configuration is capable of correcting the
drift without the knowledge of the global similarity alignment. The global similari-
ty transformation is in turn estimated later on when there is well-conditioned motion.
Moreover, we further propagate such positional measurements to the other cameras vi-
a relative pose constraints that retain the local camera motion. Geometric constraints
based on reprojection error are involved to ensure the consistency between the recon-
structed cameras and 3D structures. Finally, a multi-scale scheme that is adapted to
different levels of noise of positional measurements is used to sample the tetrahedral
and relative pose constraints. All these constraints are formulated as solving a non-
linear least square optimization. After reviewing the related work in Section 1.1, we
first introduce our key idea on tetrahedral network in Section 2.1. Then the formulation
is given in Section 2.2 along with a discussion on the details of the optimization in Sec-
tion 2.4. In Section 3, we finally describe the implementation of our system and present
detailed evaluations on our approach.

1.1 Related Work

The work on integrating the positional measurements with a similarity reconstruction
can be classified into two categories.

A part of previous research only obtained a metric upgrade by estimating the scale
factor between the up-to-scale visual measurement and the metric measurements. Nützi
et al. [14] used a spline fitting technique to estimate the scale. Engel et al. [3] proposed
a recursive update formula for Maximum likelihood estimation of the scale factor. Their
approach takes a metric altitude of a helicopter and the height estimated from a video
camera looking downwards to the grounds. In these works, the visual measurement
is assumed to be normally distributing around the true estimations. Unfortunately, the
assumption is generally not true because the monocular SLAM reconstructs drifted
measurements.

Another part of research resolved the drifting problem through the fusion given a
good initial similarity alignment. Michot et al. [10] augmented the classic bundle ad-
justment of reprojection error with a penalty term to minimize the error of the difference
of the positional measurements and the similarity reconstruction. Lhuillier [8] proposed
a constraint optimization framework on the bundle adjustment that guarantees a small
change of reprojection error during the fusion. Konolige et al. [6] further marginal-
ized the geometric constraint in the bundle adjustment and optimized a pose graph
which constraints only the relative pose between the cameras. However, all these works
require an initial similarity alignment between the visual measurement and positional
measurements. Such an alignment is estimated with a subset of the measurements at the
beginning of the fusion, which could be problematic if such subset of measurements is
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Fig. 1. The illustration of the fusions. (a) and (b) are the positional measurements (PM) and
visual measurements that are under an unknown similarity transformation. (c) is an illustration
of a successful fusion which successfully estimate the similarity alignment and correct the drift.
(d) illustrates the case that the initial similarity alignment is estimated with a critical motion in
the red rectangle. Such alignment is unstable because the rotation (the blue arrow) around the
moving direction (the green dashed line) is not well constrained.

in bad condition, such as forming a straight line. Extended Kalman Filter (EKF) [14, 2]
has also been used to fuse both the motion and scale simultaneously. In these work, the
scale factor is explicitly considered and involved in the state vector of the motion. How-
ever, they all required an initial Euclidean registration whose accuracy is very important
for the later recursive update.

2 Multi-scale Tetrahedral Fusion

We have two sets of input measurements, a similarity reconstruction generated by
monocular SLAM and positional measurements obtained through external sensors such
as GPS. The similarity reconstruction includes the poses C = {Cj} of the monocular
camera at each frame and a set of reconstructed 3D points P = {pi} as in Figure 1 (b).
Each camera is parameterized as Cj = Kj [Rj |tj ]. For monocular SLAM,Kj is usually
fixed during the capture, so we simply assume Kj is pre-calibrated and drop such terms
in the following text. We further denote the extrinsic parameters Rj and tj as an Eu-
clidean transformation Tj that belongs to SE(3) group. The camera Cj and 3D point pi
are linked by the image feature qij via the projection function Q(Cj , pi) if pi is visible
in Cj . The positional measurement G = {Gk} are recorded simultaneously when the
camera is moving as in Figure 1 (a). Since the temporal sampling rates of vision and
positional measurements are usually different, we explicitly align the index set {j} and
{k} to make sure that k denotes the frames with positional measurements while other
frames are generally denoted by index j.
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Fig. 2. The illustration of tetrahedral fusion. (a) A toy example of three GPS and visual measure-
ments; (b) Sparse sampling of triangular constraints is not sufficient to constraint the structure;
(c) A tetrahedral structure consisting of four triangular constraints can well preserve the shape.

Since the coordinate frame of the visual measurement generated by monocular S-
LAM is unknown, in the alignment-based fusion, a global similarity transformation
SG = S(G,C, P ) is first estimated to transform the visual measurement to the coordi-
nate frame of positional measurement as Ĉ, P̂ = SG(C,P). Then an optimized fused
measurement C′,P ′ = arg min

C′,P′
Efusion(C,P, G). However, in practice, in the present

of noisy positional measurement and the degenerated motions, the estimation of SG is
not always valid and robust. In the following, we introduce a novel framework based
on similarity invariants to directly fuse the visual measurement and positional measure-
ment without the knowledge of SG. The global similarity transformation SG can then
be recovered when there are sufficient measurements and well-conditioned motions.
Such decoupling of the alignment from the fusion greatly improves the robustness of
the fusion.

2.1 Overview of Tetrahedral Fusion

To fuse a similarity reconstruction with metric positional measurements without align-
ment, we must make use of similarity invariant properties that are the ratios of dis-
tances and the angles. These invariant properties are completely encoded by the ra-
tios of all edge pairs of a triangle. Let tri = (G0, G1, G2) in Figure 2 (a) be a refer-
ence triangle. The ratios between its edges, ‖G0G1‖/‖G1G2‖, ‖G1G2‖/‖G2G0‖, and
‖G2G0‖/‖G0G1‖, remain unchanged under a similarity transformation. Let’s further
denote another triangle as tri′ = (c0, c1, c2) whose vertex ci corresponds to Gi un-
der an unknown similarity transformation. We introduce a ratio constraint on a pair of
triangles:

Eratio(ci, cj , ck) = (‖ci − cj‖ −
‖GiGj‖
‖GiGk‖

· ‖ci − ck‖)2 (1)

For each triangle, three permutations for its vertices give in total three ratio constraints
for a triangle.

It is theoretically sufficient to exhaustively enumerate all combination of three po-
sitional measurements to constraint the fusion. However, such an exhaustive enumera-
tion generates a large number of constraints that overwhelm the computation. A sparse
sampling of triangles is thus preferred. Unfortunately, arbitrary sampling does not guar-
antee a stable fusion. As illustrated in Figure 2 (b), even if the ratio constraints of such
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(a) SLAM before fusion (b) What it should be after fusion (c) The rotation of cameras are 
not corrected if only center 
constraints are performed 

Fig. 3. The illustration of the result without rotation constraints. (a) Original SLAM before fu-
sion; (b) Since our fusion result is up to a similarity transformation. The rotation of each camera
should remain consistent with original motion. (c) The rotation of each camera cannot be well
constrained if only the ratio constraint is applied.

two sampled triangles are met with respect to the referenced triangles, such triangles
can still rotate arbitrarily around the edge C0C1. Hence, to ensure the stabilities of the
structure, we introduce tetrahedral constraints, which ensure that all the triangles in four
randomly selected vertices must be sampled at the same time as in Figure 2 (c).

Because the ratio constraints in Equation 1 only maintain the corresponding distance
ratio among the position of cameras, the rotation of each camera is not well constrained
and is free up to an arbitrary rotation as shown in Figure 3. We further introduce a term
Etertrarot as Equation 2 to constrain the rotation of cameras with respect to the edges
of the sampled tetrahedron:

Etetrarot(Dt) =
∑
i∈Dt

∑
j 6=i,j∈Dt

(
(R′i(c

′
j − c′i))T (Ri(cj − ci))

||R′i(c′j − c′i)|| · ||Ri(cj − ci)||
− 1)2 (2)

Actually, the Ri(cj − ci) is the projection of translation vector between camera i and
j on camera i. And (R′i(c

′
j − c′i))T (Ri(cj − ci))/||R′i(c′j − c′i)|| · ||Ri(cj − ci)|| is the

cosine of angle between such projection before and after fusion. This constraint tries to
maintain the consistency between rotation of each camera and the translation between
cameras.

Given the tetrahedral constraints, the ratio constraint has a family of trivial solu-
tions that are defined up to a similarity transformation of G. We further introduce two
other sets of constraints. One is the relative pose constraint [7], which enforces consis-
tency of the local motion and rotation of the cameras. The other one is the geometric
constraints [18], which enforces consistency between the camera poses and 3D points.

2.2 Formulation

Formally, given a reconstruction C and P defined up to an arbitrary similarity transfor-
mation, and the positional measurement G in a global geographical reference frame, in
the tetrahedral fusion, we are looking for an updated camera poses C′ and 3D points P ′,
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which are still up to a similarity transformation, but associated with G by minimizing
the following energy function.

C′,P ′ = arg min
C′,P′

(Etetra + α · Epose + β · Ebundle), (3)

where Etetra, Epose, and Ebundle are the energies for tetrahedral constraint, relative
pose constraint, and geometric constraint respectively. The tetrahedral constraint is the
core of our algorithm, which sets up ratio constraints over a tetrahedral network on the
positional measurements. The relative pose constraint embeds the camera poses that
do not have corresponding positional measurements into the fusion and makes sure the
upgraded camera poses follow the original motion. The last geometric constraint is a
classical term that ensures the consistency between camera poses and reconstructed 3D
structures. We now present these three terms in details.

Tetrahedral constraint. The tetrahedral constraint is defined as two parts:

Etetra = Eratiogps + Erot (4)

The first term is to constrain the ratio relationship between GPS and SLAM as
Equation 5.

Eratiogps =
∑
{Dt}

wt
∑

i,j,k∈P 3
(Dt)

1

12
· Eratio(c′i, c′j , c′k), (5)

where P 3
(Dt)

is all the permutations of three cameras in tetrahedron Dt; and the wt is
the weight of the tetrahedral constraint, normalized by the number of tetrahedrons on
its sampling level as Section 2.3. Because the tetrahedral constraints are relative to both
GPS and SLAM data, tetrahedrons {Dt} are only sampled in the frames where both
GPS and SLAM data are available.

The second part is a tetrahedral constraint for rotation defined in the tetrahedrons
D′t as Equation 6 to maintain the relative rotation among cameras and tetrahedrons.

Erot =
∑
{D′t}

w′tEtetrarot(D
′
t) (6)

Rotation constraints involve only SLAM data, so tetrahedrons D′ = {D′t} are sampled
among all the frames.

Relative pose constraint The relative pose constraint [7] penalizes large changes in
the relative pose transformation between two connected cameras, C ′i and C ′j . Let the
original relative transformation from Ci to Cj be ∆Tij = T−1i Tj . The relative pose
constraint is defined as:

Epose =
∑
{i,j}

‖ logSE(3)(T
′
i ·∆Tij · T ′−1j )‖2Σij

, (7)
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(a) Tetrahedral constrains at scale s0! (b) Tetrahedral constrains at scale s1!
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Fig. 4. The illustration of multi-scale constraints. For clarity, in (a) and (b), tetrahedral constraints
are simplified and illustrated as triangular constraints. Please note that the camera poses and
positional measurements are roughly aligned in the illustrations for easy understanding, but in
the fusion we do not assume any pre-alignment.

where logSE(3)(·) measures the relative pose error in the tangent space of SE(3) group
and Σij is the precision matrix of the Mahalanobis distance ‖ · ‖Σij

for 2-tuple camera
pose Ci and Cj . We set Σij as:

Σij = wij

[
σ2
transI3×3 0

0 σ2
rotI3×3

]
(8)

Geometric constraint The geometric constraint mimics the bundle adjustment that min-
imizes the reprojection error in a maximum likelihood estimation manner. It is defined
to be

Ebundle =
∑
{qij}

‖qij −Q(Cj , pi)‖2Σ , (9)

where Σ is precision matrix for reprojection errors. Conventionally, this term is simply
set to identity because the covariance of the reprojection error is hardly known before-
hand.

2.3 Multi-scale Constraints

The tetrahedral constraints and relative pose constraints are defined on 4-tuple and 2-
tuple relationship respectively. The sampling of such tuples significantly affects the
performance of the optimization of Equation 3. A multi-scale scheme to sample such
tuples to fuse different level of details of information is therefore necessary.

The tetrahedral tuples are sampled on the positional measurements G as in Fig-
ure 4 (a) and (b). For each scale sl = bn/2L−lc where L = dlog2ne, l = 0, . . . , lmax,
we sample the tetrahedron as (i, i + sl, i + 2sl, i + 3sl) for i = 0, sl, 2sl . . . bn/slcsl.
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The sampled tetrahedral tuples for Eratiogps and Erot in Equation 4 are slightly differ-
ent. For the first part, the tuples are sampled on overlapped cameras in GPS and SLAM
and lmax is set as L− 2 to constrain ratio on GPS from the smallest scale to the largest.
For the second parts, they are sampled on all the cameras in SLAM.

The relative pose constraints are defined on the camera poses C. For each scale
sl = 2l where l = 0, 1, . . . , Lr, we create the relative pose tuple as (i, i + sl) for
i = 0, sl, 2sl . . . bn/slcsl as in Figure 4 (c) and (d).

Instead of setting all the weights wt, w′t and wij of the constraints in every scale
uniformly, which makes the fine-scale constraints contribute more than the coarse-scale
ones do, we set the sum of the weights of each scale identical to each other.

2.4 Optimization

While the general non-linear least squares problem [13] and its concrete application in
bundle adjustment [18] have been well studied in the past decades. We still need care-
fully decide the weight of the energy terms in Equation 3, because such terms penalize
different objectives are in different sensor systems that cannot be combined directly .
In the following, we discuss the strategies of setting the weights. Then we briefly de-
scribe how to extend our method to incremental optimization, which is more useful for
real-time applications.

Weight selection We set the β to be Etetra/Ebundle with the initial errors empirically
according to the extensive evaluation in [8]. However, the similar strategy does not work
for setting α, because the initial error ofEpose is 0. Instead, we broke α as αrigidαnorm.
αnorm is a normalization factor that ensure the sum of all wij is the same as the sum
of all wt. αrigid is to control how rigid the original local motion should be. For very
noisy positional measurements, αrigid should be increased to avoid overfit to G. In our
experiment, αrigid is fixed to 0.1.

Incremental optimization For real-time applications, it is unaffordable to setup the
tetrahedral network and optimize all the variables globally whenever new measure-
ments arrive. Our framework can be easily modified to support incremental optimiza-
tion similar to local bundle adjustment [4]. Let’s call the last n frames that are involved
in the incremental optimization as active frames. Only the constraints in Equation 3 that
overlap the active frames are kept. Moreover, the parameters that lay in the non-active
frames are fixed during the optimization.

3 Implementation and Experiments

We implemented a standard visual SLAM system to generate the visual measurement
from a video taken by a monocular camera. We first detect and track features with Har-
ris corners and KLT tracker. Only the tracks spanning more than five frames are kept
for camera pose estimation. Visual keyframes are inserted whenever less than 70% of
tracks are kept from last keyframes. To initialize the reconstruction, a sliding window
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Fig. 5. Simulation datasets and results. Top row: WALL; bottom row: FLIGHT. (a) Ground-truth;
(b) Perturbed GPS; (c) Visual SLAM; (d) Results by our method; (e) Results by IBA [8].

containing the last three consecutive keyframes is used to scan the tracked frames until
a 5-point triplet reconstruction [12] is succeeded with a sufficient baseline and enough
inlier tracks. Then the camera poses of consecutive frames are resectioned using 3-
point pose estimation algorithm. A new 3D point is triangulated and verified whenever
the baseline among its visible cameras is large enough. Local bundle adjustment [4]
is used to improve the local consistency of the estimated 3D points and cameras. The
implementation of our tetrahedral fusion according to Equation 3 is quite straight for-
ward. Ceres Solver [1] is used to solve the non-linear least square optimization. All our
implementation is written in C++ without any GPU optimization. The experiments are
carried out on a PC equipped with Intel Core i7-930 CPU and 16GB ram. All parame-
ters are set to the default value introduced in the paper, while the weight in Equation 3
are set by the strategy described in Section 2.4. The fusion process now runs on our test
platform at about 9 fps.

3.1 Simulation Experiments

Because of the lack of ground-truth for the experiment data, we generate two simula-
tion datasets, named as WALL and FLIGHT. WALL is to simulate a common forward
moving motion for humans and ground vehicles. It is generated by constructing two
concentric circular walls and making the camera move along the corridor between the
two walls. The camera is kept looking forward during the whole simulation. FLIGHT
is to simulate a typical flight of an UAV that takes video using a camera looking down-
wards vertically at the ground. The simulated camera takes off and lands, moving in
circle and shooting at a flat ground. Random 3D points are sampled on the synthetic
scenes and projected back to the moving cameras to construct the simulated feature
tracks for SLAM. Each projection in feature tracks is perturbed by a random noise at
0.5 pixels. The predefined camera moving trajectories are considered as the ground
truth GPS measurement {G∗k}. The ground truth are shown in Figure 5 (a). Random
perturbation σgps is added to {G∗k} to generate the perturbed GPS measurements {Gk}
as shown in Figure 5 (b). The reconstructed trajectories by SLAM as shown in Fig-
ure 5 (c) are used as the visual measurement {Cj}. In the following, we first evaluate
our fusion result via visual inspection and then carefully study how the fusion works
with respect to different parameter settings and noise levels comparing with the state-
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Table 1. Mean (m), standard deviation (σ) and maximum value (∞) of absolute position error of
camera locations with respect to perturbed GPS (gps) and ground-truth GPS (gt). SLAM is the
result of visual SLAM. Tetra is our method. IBA is method in [8].

mgps σgps ∞gps mgt σgt ∞gt

SLAM 123.5 67.39 212.1 123.5 67.42 212.0
WALL Tetra 12.33 5.603 19.53 12.53 5.475 20.17

IBA 103.0 56.08 176.2 103.0 56.05 176.2
SLAM 6.317 1.909 12.76 6.317 2.797 10.40

FLIGHT Tetra 3.386 1.833 9.885 1.481 0.7583 3.051
IBA 3.299 1.900 9.771 1.608 1.011 3.261

of-the-art positional fusion IBA [8]. The following experiments are performed by batch
version of our method and IBA [8].

Qualitative evaluation The visual SLAM result of dataset WALL, as shown in Fig-
ure 5 (c), suffers from serious drift, because the forward moving motion gives very
narrow baseline between consecutive frames and makes the reconstruction with large
bias. However, after the tetrahedral fusion with the noisy GPS data as shown in Fig-
ure 5 (b), we get a visually plausible trajectory as shown in Figure 5 (d) that almost
close the loop perfectly. In contrast, as shown in the top row of Figure 5 (e), IBA [8]
cannot deal with drift because the initial similarity alignment is biased due to the drifted
visual measurement and noisy positional measurements. In the dataset FLIGHT, Fig-
ure 5 (d) and (e) do not show too much difference visually between our method and
IBA, since the result of visual SLAM has very small error.

Quantitative evalution Here we quantitatively evaluate our method using the absolute
camera position error with respect to the ground truth GPS. Since our fusion framework
yields only an up-to-scale reconstruction, an optimal similarity transform is computed
to align the SLAM result and GPS before the computation of the absolute error. First,
Table 1 illustrates the absolute position error of our method compared with original vi-
sual SLAM and IBA when the perturbation added to the ground-truth GPS is σgps = 4,
where the size of the simulation scene is roughly 100. Then to evaluate the effectiveness
of the energy terms in Equation 3, we carry out the fusion without the relative pose con-
straint Epose and geometry constraint Ebundle. Moreover, we study the performance of
our framework with uniform weights for each piece of constraint in Equation 3. In these
experiments, we vary the perturbation of GPS to σgpsz = 2, 4, 8. The results are plot-
ted and listed in Figure 6 and Table 2. We can easily find that our fusion method with
adaptive weighting gives best results in terms of absolute position error in most cases.
However, an exception is the case when the noise level is low. Such result is reasonable,
because given the GPS measurements with very little noise, any good algorithm should
rely on GPS measurement directly. Therefore, our fusion without relative pose gives
better results than the fusion with all constrains. The uniform weighting also performs
better because the uniform weighting strategy essentially weights less the relative pose
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Fig. 6. Absolute position error of each frame with respect to the ground-truth GPS for the fusion
using different configurations of energy terms and weights.

Table 2. Mean (m), standard deviation (σ) and maximum value (∞) of absolute position error
with respect to the ground-truth GPS (gt) on simulation datasets by the fusion using different
configurations of energy terms and weights.

σgps = 2 σgps = 4 σgps = 8

mgt σgt ∞gt mgt σgt ∞gt mgt σgt ∞gt

No relative pose 11.63 3.518 17.7 36.63 14.77 57.17 58.84 26.28 102.1
WALL No geometry 24.98 12.47 38.95 25.54 12.71 39.70 22.32 8.927 32.64

All constraint 12.83 5.581 19.53 12.63 5.600 20.04 8.979 3.169 16.78
Uniform Weight 6.105 2.700 14.71 21.43 6.407 32.34 68.40 32.26 114.0
No relative pose 3.810 1.853 12.37 4.878 2.904 19.09 26.96 18.64 91.22

FLIGHT No geometry 12.06 5.175 18.90 3.447 1.807 6.245 38.16 18.48 61.34
All constraint 0.614 0.696 1.908 1.481 0.7583 3.051 3.971 2.297 7.750

Uniform Weight 4.381 1.626 9.326 29.32 13.50 60.85 30.90 13.53 56.05

term since the number of the relative pose constraints is far less than the tetrahedral
constraints.

3.2 Real-video Experiments

In this section, we test our fusion with six real videos divided in two groups. The first
group includes five real videos with noisy or incomplete GPS data. The first video is part
of part 1 in New College Dataset[16], which is called “NEW” in the following. The next
three video “GARDEN”, “HOUSE”, “PARK” are taken by a monocular camera mount-
ed on an unmanned aerial vehicle, the GPS measurement is output by the on-board flight
controller. These videos are taken at 10Hz with the resolution 686 × 452 pixels, while
the positional measurements are recorded at about 3Hz. The last video “CAMPUS” is
captured on a ground vehicle with the resolution 640×480 pixels at 15Hz, while the G-
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Table 3. Statistics on the running time of batch fusion for the real video datasets.

# of iterations # of visual frames # of GPS frames # of tracks # of projections Total time

NEW 163 2552 324 74717 1087035 21348.6s
GARDEN 158 881 288 47088 454655 172.5s
HOUSE 154 826 322 52904 453929 132.8s
PARK 186 632 247 30597 379133 250.9s

CAMPUS 167 2395 2395 149725 1011778 15996.9s
KITTI 171 666 564 162509 990748 13657.3s

(b) GARDEN, σTetra = 0.0135, σInitial = 0.1198 

(d) PARK, σTetra = 0.0403, σInitial = 0.3626 

(c) HOUSE, σTetra = 0.0077, σInitial = 0.1515 

(e) CAMPUS, σTetra = 0.1078, σInitial = 1.219 
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(a) NEW, σTetra = 0.3308, σInitial = 0.5725 
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Fig. 7. The scale estimation on the real video datasets. Green line: the initial scale estimated by
aligning the SLAM measurements of the latest 20 frames with the corresponding GPS. Red line:
the scale estimated by aligning our fused measurements with the corresponding GPS measure-
ments. σinitial and σtetra are the standard deviation of the initial scales and the scale estimated
by our fusion respectively.

PS measurements are recorded at about 10Hz. The second group contains one real video
“2011 09 26 drive 0117” in the raw data in KITTI vision benchmark[5], which is one
of the longest videos of raw data. In the following, this video is called “KITTI”. The
GPS in this data is enough accurate and regarded as ground-truth on the benchmark. We
regard the original GPS as ground-truth in our experiment and add Gaussian noise to
the original GPS data to generate noised GPS. The scale of datasets in our experiment
and running time of batch fusion is listed in Table 3.

Group without ground-truth Since we do not have the access to the specification of
the GPS sensors, we have little knowledge on the accuracy of the GPS measurement. To
quantize the magnitude of the noise of GPS, we compute the standard deviation of the
magnitude of angular acceleration, listed as σa at the top row of Table 4. Figure 8 (i-
i) shows the noisy GPS measurement of NEW, GARDEN and CAMPUS visually .
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Table 4. Mean (m) and standard deviation (σ) of absolute position error of camera locations with
respect to GPS measurement (gps) for real data. m2d is the mean value of the ratio between the
reprojection error after fusion and the reprojection error of SLAM [8]. Tetra is our method. IBA
is method in [8].

NEW, σa = 15.66◦ GARDEN, σa = 25.80◦ HOUSE, σa = 24.44◦

mgps σgps m2d mgps σgps m2d mgps σgps m2d

SLAM 6.12037 3.60924 (1) 2.833 1.000 (1) 4.040 1.365 (1)
Tetra 0.03089 0.5483 1.004 0.115 0.566 1.624 0.2857 0.6410 3.713
IBA 2.38272 1.56625 24.82 0.0729 0.5662 1.64673 1.500 0.7680 4.47081

PARK, σa = 24.68◦ CAMPUS, σa = 31.04◦

mgps σgps m2d mgps σgps m2d

SLAM 3.170 2.223 (1) 157.1 80.97 (1)
Tetra 0.2713 0.6276 9.752 2.520 2.698 1.582
IBA 0.4737 0.6376 26.2039 7.319 1.360 2.8881

Table 5. Mean (mgt) and standard deviation (σgt) of absolute position error of camera locations
with respect to original GPS measurement for “KITTI”.mgps and σgps is with respect to noised
GPS measurement.m2d is the mean value of the ratio between the reprojection error after fusion
and the reprojection error of SLAM [8]. Tetra is our method. IBA is method in [8].

mgt σgt ∞gt mgps σgps ∞gps m2d

SLAM 5.456 2.174 8.731 5.863 2.151 9.436 (1)
Tetra 0.5621 0.6313 1.928 0.9096 0.7564 3.335 0.9969
IBA 0.6365 0.8466 2.495 0.9273 0.8843 3.417 7.340

Though the σa of NEW is not large, Figure 8 shows that its GPS data is incomplete,
which corresponds to the situation where GPS information cannot be obtained in urban
valley environment. With such noisy GPS measurements, we estimate the scale factor
between GPS and visual measurements by finding the best similarity transformation to
align the latest 20 GPS measurements with the corresponding SLAM measurements.
The green plots in Figure 7 show that the estimated scale is very noisy, which makes
the fusion with positional measurement not stable using alignment-based method. Even
worse, the SLAM measurements contain very large drifting as shown in Figure 8 (c.i)
and Figure 7 (e). In contrast, even without the initial alignment, our method successful
fuses the GPS and SLAM measurements, which in turn makes the estimation of scales
very robust as shown in the red plots of Figure 7.

To compare the absolute position errors with IBA, we take all SLAM measurements
and corresponding GPS measurements to estimate a robust similarity transformation, so
that IBA can successfully fuse the GPS and SLAM measurements. We also compute the
ratio between the reprojection error of fusion results and the reprojection error of SLAM
for a comparison. The statistic of the comparison listed in Table 4 shows that our fusion
method gives the best results in most cases. Although sometimes IBA gives comparable
results, it is noted that IBA requires a robust alignment before fusion, while ours can
fuse the positional measurements even such alignment is not valid.
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(iii) 

(a) NEW 
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(b) GARDEN 
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(c) CAMPUS 
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Fig. 8. The results of batch version of our method on NEW, GARDEN, CAMPUS and KITTI.
(i) The results of SLAM; (ii) GPS measurements(noised GPS for KITTI), the region in the blue
rectangle is zoomed in and shown in the black rectangle; (iii) Our fusion results. The orange and
red circles indicate the corresponding visual and GPS measurements to show the large drift in
visual SLAM.

Group with ground-truth Since the GPS data of “KITTI” is enough accurate and
regarded as ground-truth, we add Gaussian noise with σ = 0.2 in three directions to the
original GPS data and the original GPS data is used as ground-truth to give quantitative
evaluation in our experiment. The detail of noised GPS is shown as Figure 8 (d.ii).
As shown in Table 5, our method generates better results than the-state-of-art method
IBA [8]. We also estimate the scale factor between GPS and visual measurements as
above experiment on dataset without ground-truth and Figure 7 (f) shows that the result
is robust.

4 Conclusions

In this paper, we propose a multi-scale tetrahedral fusion framework. The key insight
of our method is the usage of the ratio of distances that is invariant under similarity
transformation, which decouples the task of fusion from the task of similarity align-
ment. The tetrahedral network ensures a sparse sampling of the ratio constraints, while
the multi-scale scheme further adapts the fusion to different level of noisy positional
measurements. Our framework is capable of fusing a similarity reconstruction with po-
sitional data even when the similarity alignment is not valid. The fused results can help
to resolve the scale ambiguity robustly.
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